First example
This very simple tutorial constructs an ACE1 model for Si by fitting to an empirical potential.
Make sure to first read the installation notes. Now start by importing the required packages:
using ACEpotentials
import Random
using LinearAlgebra: norm, Diagonal
Step 1: specify the ACE Model
The parameters have the following meaning:
elements
: list of chemical species, symbolsorder
: correlation ordertotaldegree
: maximum total polynomial degree used for the basisrcut
: cutoff radius (optional, defaults are provided)
model = acemodel(elements = [:Si,],
order = 3,
totaldegree = 10,
rcut = 5.0)
@show length(model.basis);
length(model.basis) = 110
Step 2: Generate a training set
Next we need to generate some training data to estimate the model parameters. Normally one would generate a training set using DFT data, stored as an .xyz
file. Here, we create a random training set for simplicity. Please note that this is generally not a good strategy to generate data!
gen_dat()
generates a single training configuration wrapped in anACEpotentials.AtomsData
structure. Eachd::AtomsData
contains the structured.atoms
, and energy value and a force vector to train against.train
is then a collection of such random training configurations.
data_keys = (energy_key = "energy", force_key = "forces")
function gen_dat()
sw = StillingerWeber()
at = rattle!(bulk(:Si, cubic=true) * rand(2:3), 0.3)
set_data!(at, data_keys.energy_key, energy(sw,at))
set_data!(at, data_keys.force_key, forces(sw,at))
return at
end
Random.seed!(0)
train = [gen_dat() for _=1:20];
Step 3: Estimate Parameters
We specify a solver and then let ACEfit.jl
to do all the work for us. More fine-grained control is possible; see the ACEfit.jl
documentation. For sake of illustration we use a Bayesian Ridge Regression solver. This will automatically determine the regularisation for us.
solver = ACEfit.BLR()
acefit!(model, train; solver=solver, data_keys...);
┌─────────┬──────────┬───────┬────┬──────┬─────┐
│ Type │ #Configs │ #Envs │ #E │ #F │ #V │
├─────────┼──────────┼───────┼────┼──────┼─────┤
│ default │ 20 │ 2344 │ 20 │ 7032 │ 0 │
├─────────┼──────────┼───────┼────┼──────┼─────┤
│ total │ 20 │ 2344 │ 20 │ 7032 │ 0 │
│ missing │ 0 │ 0 │ 0 │ 0 │ 120 │
└─────────┴──────────┴───────┴────┴──────┴─────┘
[ Info: Assembling linear problem.
[ Info: - Creating feature matrix with size (7052, 110).
[ Info: - Beginning assembly with processor count: 1.
Progress: 10%|████▏ | ETA: 0:00:08
Progress: 25%|██████████▎ | ETA: 0:00:06
Progress: 40%|████████████████▍ | ETA: 0:00:05
Progress: 55%|██████████████████████▌ | ETA: 0:00:03
Progress: 70%|████████████████████████████▊ | ETA: 0:00:02
Progress: 85%|██████████████████████████████████▉ | ETA: 0:00:01
Progress: 100%|█████████████████████████████████████████| Time: 0:00:07
[ Info: - Assembly completed.
[ Info: Assembling full weight vector.
Iter Function value Gradient norm
0 6.727465e+03 6.769388e+03
* time: 4.601478576660156e-5
1 -1.653584e+03 2.072568e+04
* time: 0.016025781631469727
2 -4.158362e+03 2.522873e+04
* time: 0.019546985626220703
3 -5.498239e+03 1.598170e+04
* time: 0.023854970932006836
4 -5.550825e+03 2.287761e+04
* time: 0.025662899017333984
5 -5.676271e+03 3.198566e+03
* time: 0.026741981506347656
6 -5.705141e+03 6.108063e+03
* time: 0.0288238525390625
7 -6.157720e+03 1.698372e+04
* time: 0.031889915466308594
8 -6.268922e+03 4.218925e+04
* time: 0.0346980094909668
9 -1.078187e+04 4.957756e+04
* time: 0.03861880302429199
10 -1.122144e+04 1.255557e+04
* time: 0.0636439323425293
11 -1.123452e+04 1.712059e+03
* time: 0.06508493423461914
12 -1.123475e+04 2.110054e+02
* time: 0.06639885902404785
13 -1.125247e+04 1.433444e+04
* time: 0.07122278213500977
14 -1.172092e+04 5.522867e+04
* time: 0.07428598403930664
15 -1.198674e+04 3.606533e+04
* time: 0.07614898681640625
16 -1.219040e+04 6.010459e+03
* time: 0.0780940055847168
17 -1.227600e+04 2.395251e+04
* time: 0.07994389533996582
18 -1.251747e+04 3.355479e+04
* time: 0.08245587348937988
19 -1.259945e+04 7.580663e+03
* time: 0.0842738151550293
20 -1.260342e+04 7.578673e+02
* time: 0.08553481101989746
21 -1.260798e+04 1.470364e+03
* time: 0.08791494369506836
22 -1.260823e+04 3.313226e+02
* time: 0.08987092971801758
23 -1.260823e+04 3.276097e+01
* time: 0.09171199798583984
24 -1.260825e+04 1.153499e-01
* time: 0.09300684928894043
25 -1.260824e+04 1.764959e-01
* time: 0.09428286552429199
26 -1.260824e+04 4.251593e-02
* time: 0.09607696533203125
27 -1.260824e+04 2.742839e-02
* time: 0.09732890129089355
28 -1.260825e+04 1.320557e-01
* time: 0.09858298301696777
29 -1.260824e+04 1.308243e-01
* time: 0.10042786598205566
30 -1.260824e+04 3.088911e-02
* time: 0.10223889350891113
31 -1.260824e+04 2.574200e-02
* time: 0.10344791412353516
32 -1.260825e+04 3.205160e-02
* time: 0.1046597957611084
33 -1.260825e+04 6.959670e-02
* time: 0.10594892501831055
34 -1.260825e+04 1.800780e-01
* time: 0.1077878475189209
35 -1.260824e+04 1.037120e-01
* time: 0.11023998260498047
36 -1.260824e+04 2.642961e-01
* time: 0.11483478546142578
37 -1.260824e+04 2.253813e+01
* time: 0.11605691909790039
38 -1.260824e+04 9.479669e-02
* time: 0.1172788143157959
39 -1.260824e+04 2.069538e-03
* time: 0.11850285530090332
* Status: success
* Candidate solution
Final objective value: -1.260824e+04
* Found with
Algorithm: L-BFGS
* Convergence measures
|x - x'| = 5.51e-09 ≤ 1.0e-08
|x - x'|/|x'| = 5.33e-11 ≰ 0.0e+00
|f(x) - f(x')| = 1.13e-03 ≰ 0.0e+00
|f(x) - f(x')|/|f(x')| = 8.99e-08 ≰ 0.0e+00
|g(x)| = 2.07e-03 ≰ 0.0e+00
* Work counters
Seconds run: 0 (vs limit Inf)
Iterations: 39
f(x) calls: 198
∇f(x) calls: 198
To see the training errors we can use
@info("Training Errors")
ACEpotentials.linear_errors(train, model; data_keys...);
[ Info: Training Errors
[ Info: RMSE Table
┌─────────┬─────────┬──────────┬─────────┐
│ Type │ E [meV] │ F [eV/A] │ V [meV] │
├─────────┼─────────┼──────────┼─────────┤
│ default │ 0.396 │ 0.037 │ 0.000 │
├─────────┼─────────┼──────────┼─────────┤
│ set │ 0.396 │ 0.037 │ 0.000 │
└─────────┴─────────┴──────────┴─────────┘
[ Info: MAE Table
┌─────────┬─────────┬──────────┬─────────┐
│ Type │ E [meV] │ F [eV/A] │ V [meV] │
├─────────┼─────────┼──────────┼─────────┤
│ default │ 0.299 │ 0.028 │ 0.000 │
├─────────┼─────────┼──────────┼─────────┤
│ set │ 0.299 │ 0.028 │ 0.000 │
└─────────┴─────────┴──────────┴─────────┘
Step 4: Run some tests
At a minimum one should have a test set, check the errors on that test set, and confirm that they are similar as the training errors.
@info("Test Errors")
test = [gen_dat() for _=1:20]
ACEpotentials.linear_errors(test, model; data_keys...);
[ Info: Test Errors
[ Info: RMSE Table
┌─────────┬─────────┬──────────┬─────────┐
│ Type │ E [meV] │ F [eV/A] │ V [meV] │
├─────────┼─────────┼──────────┼─────────┤
│ default │ 0.223 │ 0.037 │ 0.000 │
├─────────┼─────────┼──────────┼─────────┤
│ set │ 0.223 │ 0.037 │ 0.000 │
└─────────┴─────────┴──────────┴─────────┘
[ Info: MAE Table
┌─────────┬─────────┬──────────┬─────────┐
│ Type │ E [meV] │ F [eV/A] │ V [meV] │
├─────────┼─────────┼──────────┼─────────┤
│ default │ 0.172 │ 0.028 │ 0.000 │
├─────────┼─────────┼──────────┼─────────┤
│ set │ 0.172 │ 0.028 │ 0.000 │
└─────────┴─────────┴──────────┴─────────┘
If we wanted to perform such a test ``manually'' it might look like this:
@info("Manual RMSE Test")
potential = model.potential
test_energies = [ JuLIP.get_data(at, "energy") / length(at) for at in test]
model_energies = [energy(potential, at) / length(at) for at in test]
rmse_energy = norm(test_energies - model_energies) / sqrt(length(test))
@show rmse_energy;
[ Info: Manual RMSE Test
rmse_energy = 0.00022336058195964
But in practice, one should run more extensive test simulations to check how robust the fitted potential is.
Step 5: export the model
The fitted model can be exported to a JSON or YAML file, or to a LAMMPs compatible yace
file. We won't go through that in this tutoral. See export2json
and export2lammps
for further information.
Step 6: Using the model
Let's do something very simple: relax a vacancy.
We create a small Si cell, delete an atom and rattle the rest
at = bulk(:Si, cubic=true) * 3
deleteat!(at, 1)
rattle!(at, 0.03 * rnn(:Si))
JuLIP.Atoms with 215 atoms
we can now minimize the ACE energy.
set_calculator!(at, potential);
minimise!(at)
E_ace = energy(at)
-924.9764073956869
If we want a formation energy, we could get it like this.
at0 = bulk(:Si)
E0_ace = energy(potential, at0);
Evac_ace = E_ace - (length(at)-1)/length(at0) * E0_ace
@show Evac_ace;
Evac_ace = 2.7148091746998944
Note that there are no vacancy structures in the training set, so this is a prediction out of sample. We have no guarantee of the accuracy of this prediction. In fact the prediction is quite far off:
sw = StillingerWeber()
set_calculator!(at, sw)
minimise!(at; verbose=false);
E_sw = energy(at)
E0_sw = energy(sw, bulk(:Si))
Evac_sw = E_sw - (length(at)-1)/length(at0) * E0_sw
@show Evac_sw;
Evac_sw = -1.1122891578452254e-5
To obtain accurate predictions on a vacancy structure, we must add it to the training set. This iterative model development process goes beyond the scope of this tutorial.
This page was generated using Literate.jl.