Spherical Harmonics

This section provides documentation for the evaluation of complex and real spherical harmonics and solid harmonics, including gradient and Laplacian calculations.

Associated Legendre Polynomials

Associated Legendre polynomials $P_{\ell}^m$ are closely related to the spherical harmonics, $P_{\ell}^m$ of degree $\ell$ and order $m\geq 0$ are defined as (in the phase convention of Condon and Shortley)

\[ P_{\ell}^m(x) = \frac{(-1)^m}{2^{\ell}\ell!}(1-x^2)^{m/2}\frac{\mathrm{d}^{\ell+m}}{\mathrm{d}x^{\ell+m}}(x^2-1)^{\ell}.\]

The negative order can be related to the corresponding positive order via a proportionality constant that involves only $\ell$ and $m$,

\[P_{\ell}^{-m}(x) = (-1)^m \frac{(\ell-m)!}{(\ell+m)!}P_{\ell}^m(x). \]

The associated Legendre polynomials are orthogonal on the interval $-1\leq x\leq 1$ in the sense that

\[\int_{-1}^{1} P_{k}^m(x) P_{\ell}^m(x) \mathrm{d}x = \frac{2}{2\ell+1}\frac{(\ell+m)!}{(\ell-m)!}\delta_{k\ell}. \]

In alp.jl, Polynomials4ML utilizes the following normalization for the associated Legendre polynomials,

\[\bar{P}_{\ell}^{m}(x) = \sqrt{\frac{(2\ell+1)(\ell-m)!}{2\pi (\ell+m)!}}P_{\ell}^m, \qquad m\geq 0\]

and one can generate a data structure as

ALPs = ALPolynomials(maxL::Integer, T::Type=Float64)

where maxL specifies the maximum degree of the polynomials.

The associated Legendre polynomials allow for

P = evaluate(basis, X)
P, dP = evaluate_ed(basis, X)

X is a point in spherical coordinates, P and dp stores P_l^m(X.cosθ) and dP_l^m(X.cosθ). Specifically, only non-negative m terms are stored, and are arranged in $\ell$-major order. To retrieve the specific values of P_l^m and dP_l^m for given indices (l, m), one can use

index_p(l,m)

The algorithm for computing associated Legendre polynomials is based on Dusson(2022) eq.(A.7), where A_l^m, B_l^m, C_l^m can be found in Limpanuparb(2014) eq.(7)-(14).

Condon-Shortley Sign Convention

There are two sign conventions for associated Legendre polynomials.

  • Include the Condon-Shortley phase factor:

\[P_{\ell}^m(x) = \frac{(-1)^m}{2^{\ell}\ell!}(1-x^2)^{m/2}\frac{\mathrm{d}^{\ell+m}}{\mathrm{d}x^{\ell+m}}(x^2-1)^{\ell}.\]

  • Exclude the Condon-Shortley phase factor:

\[P_{\ell}^m(x) = \frac{1}{2^{\ell}\ell!}(1-x^2)^{m/2}\frac{\mathrm{d}^{\ell+m}}{\mathrm{d}x^{\ell+m}}(x^2-1)^{\ell}.\]

One possible way to distinguish the two conventions is

\[P_{\ell m}(x) = (-1)^m P_{\ell}^m(x). \]

The Condon-Shortley sign convention enables us to establish the following relationships between spherical harmonics and angular momentum ladder operators

\[Y_{\ell}^m(\theta, \varphi) = A_{\ell m}\hat{L}_-^{\ell-m}Y_{\ell}^{\ell}(\theta, \varphi), \]

\[Y_{\ell}^m(\theta, \varphi) = A_{\ell, -m}\hat{L}_+^{\ell+m}Y_{\ell}^{-\ell}(\theta, \varphi), \]

with all positive constants $A_{\ell m} = \sqrt{\frac{(\ell+m)!}{(2\ell)!(\ell+m)!}}$. Ignoring the Condon-Shortley phase would introduce signs into the $A_{\ell m}$. It's only a sign convention.

Including the factor of $(-1)^m$ and written in terms $x=\cos\theta$, the first few associated Legendre polynomials are

$m\backslash\ell$0123
3$-15\sin^3\theta$
2$3\sin^2\theta$$15\cos\theta\sin^2\theta$
1$-\sin\theta$$-3\sin\theta\cos\theta$$-\frac{3}{2}(5\cos^2\theta - 1)\sin\theta$
0$1$$\cos\theta$$\frac{1}{2}(3\cos^2\theta - 1)$$\frac{1}{2}\cos\theta(5\cos^2\theta-3)$

Complex Spherical Harmonics

In cylm.jl, Polynomials4ML utilizes orthonormalized complex spherical harmonics that includes the Condon-Shortley phase, defined as

\[ Y_{\ell}^m(\theta, \varphi) = \sqrt{\frac{2\ell+1}{4\pi}\frac{(\ell-m)!}{(\ell+m)!}}P_{\ell}^m(\cos \theta)\mathrm{e}^{\mathrm{i}m \varphi}. \]

The normalization in complex spherical harmonics is chosen to satisfy

\[ \int_0^{2\pi}\int_0^{\pi}Y_{k}^m(\theta, \varphi)\bar{Y}_{\ell}^n(\theta, \varphi)\sin \theta \mathrm{d}\theta\mathrm{d}\varphi =\delta_{k\ell}\delta_{mn}.\]

Orthonormalized complex spherical harmonics that include the Condon-Shortley phase up to degree $\ell = 3$ are

$m\backslash\ell$0123
3$-\frac{1}{8}\sqrt{\frac{35}{\pi}}\cdot \mathrm{e}^{3\mathrm{i}\varphi}\cdot \sin^3\theta$
2$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\cdot \mathrm{e}^{2\mathrm{i}\varphi}\cdot \sin^2\theta$$\frac{1}{4}\sqrt{\frac{105}{2\pi}}\cdot \mathrm{e}^{2\mathrm{i}\varphi}\cdot \sin^2\theta\cdot \cos\theta$
1$-\frac{1}{2}\sqrt{\frac{3}{2\pi}}\cdot \mathrm{e}^{\mathrm{i}\varphi}\cdot \sin\theta$$-\frac{1}{2}\sqrt{\frac{15}{2\pi}}\cdot \mathrm{e}^{\mathrm{i}\varphi}\cdot \sin\theta \cdot \cos\theta$$-\frac{1}{8}\sqrt{\frac{21}{\pi}}\cdot \mathrm{e}^{\mathrm{i}\varphi}\cdot \sin\theta \cdot (5\cos^2\theta-1)$
0$\frac{1}{2}\sqrt{\frac{1}{\pi}}$$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cdot \cos \theta$$\frac{1}{4}\sqrt{\frac{5}{\pi}}\cdot (3\cos^2\theta - 1)$$\frac{1}{4}\sqrt{\frac{7}{\pi}}\cdot (5\cos^3\theta - 3\cos\theta)$
-1$\frac{1}{2}\sqrt{\frac{3}{2\pi}}\cdot \mathrm{e}^{-\mathrm{i}\varphi}\cdot \sin\theta$$\frac{1}{2}\sqrt{\frac{15}{2\pi}}\cdot \mathrm{e}^{-\mathrm{i}\varphi}\cdot \sin\theta \cdot \cos\theta$$\frac{1}{8}\sqrt{\frac{21}{\pi}}\cdot \mathrm{e}^{-\mathrm{i}\varphi}\cdot \sin\theta \cdot (5\cos^2\theta-1)$
-2$\frac{1}{4}\sqrt{\frac{15}{2\pi}}\cdot \mathrm{e}^{-2\mathrm{i}\varphi}\cdot \sin^2\theta$$\frac{1}{4}\sqrt{\frac{105}{2\pi}}\cdot \mathrm{e}^{-2\mathrm{i}\varphi}\cdot \sin^2\theta\cdot \cos\theta$
-3$\frac{1}{8}\sqrt{\frac{35}{\pi}}\cdot \mathrm{e}^{-3\mathrm{i}\varphi}\cdot \sin^3\theta$

To generate the complex spherical harmonics $Y_{\ell}^m$ with normalized associated Legendre polynomials $\bar{P}_{\ell}^m$, the formulas can be rewritten as

\[\begin{cases} Y_{\ell}^0(\theta, \varphi) = \sqrt{\frac{1}{2}}\bar{P}_{\ell}^0(\cos \theta)\\ Y_{\ell}^m(\theta, \varphi) = \sqrt{\frac{1}{2}}\bar{P}_{\ell}^m(\cos \theta)\mathrm{e}^{\mathrm{i}m \varphi}\\ Y_{\ell}^{-m}(\theta, \varphi) = (-1)^m\cdot \sqrt{\frac{1}{2}} \bar{P}_{\ell}^m(\cos \theta)\mathrm{e}^{-\mathrm{i}m \varphi} \end{cases}, \qquad m>0.\]

To evaluate the gradients of the spherical harmonics $\nabla Y_{\ell}^m$, one need to convert a gradient with respect to spherical coordinates to a gradient with respect to cartesian coordinates,

\[\begin{cases} (\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}) = (-\frac{\sin\varphi}{r\sin \theta}, \frac{\cos\varphi}{r\sin \theta}, 0)\\ (\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}) = (\frac{\cos \varphi \cos \theta}{r}, \frac{\sin \varphi \cos \theta}{r}, -\frac{\sin \theta}{r}) \end{cases}.\]

Therefore, the gradient of $Y_{\ell}^m$ can be expressed as,

\[\nabla Y_{\ell}^m = \frac{\mathrm{i}m P_{\ell}^m \mathrm{e}^{\mathrm{i}m\varphi}}{r\sin \theta}\begin{bmatrix} -\sin \varphi \\\cos \varphi \\0 \end{bmatrix} + \frac{\partial_{\theta}P_{\ell}^m \mathrm{e}^{\mathrm{i}m\varphi}}{r}\begin{bmatrix} \cos \varphi \cos \theta\\\sin \varphi\cos \theta \\-\sin\theta \end{bmatrix}.\]

For the sake of simplicity, we incorporated the coefficient in of $P_{\ell}^m$ into the term $P_{\ell}^m$ itself.

To ensure numerically stable evaluation of gradients near $\sin \theta = 0$, we compute $P_{\ell}^m/\sin \theta$ instead of $P_{\ell}^m$. We refer to section A.1 of Dusson(2022) for detailed discussion.

We can further compute $\nabla^2 Y_{\ell}^m$ as,

\[\nabla^2 Y_{\ell m} = \left(\frac{1}{r^2}\frac{\partial}{\partial r} r^2\frac{\partial}{\partial r} - \frac{L^2}{r^2} \right)Y_{\ell}^m = -\frac{\ell(\ell+1)}{r^2}Y_{\ell}^{m}.\]

One can generate a data structure as

cylm = CYlmBasis(maxL::Integer, T::Type=Float64)

The complex spherical harmonics allow for

P = evaluate(basis, X)
P, dP = evaluate_ed(basis, X)

To retrieve the specific values of Y_l^m and dY_l^m for given indices (l, m), one can use

index_y(l,m)

Alternative normalizations conventions

Here, we provide a list of alternative normalizations conventions for complex spherical harmonics,

  • Schmidt semi-normalized (Racah's normalization)

\[C_{\ell}^m(\theta, \varphi) = \sqrt{\frac{4\pi}{2\ell + 1}}Y_{\ell}^m(\theta, \varphi) = \sqrt{\frac{(\ell-m)!}{(\ell+m)!}}P_{\ell}^m(\cos \theta)\mathrm{e}^{\mathrm{i}m \varphi}, \]

with

\[\int_0^{2\pi}\int_0^{\pi}C_{k}^m(\theta, \varphi)\bar{C}_{\ell}^n(\theta, \varphi)\sin \theta \mathrm{d}\theta\mathrm{d}\varphi = \frac{4\pi}{2\ell + 1}\delta_{k\ell}\delta_{mn}. \]

In this normalization, $C_0^0(\theta, \varphi)$ is equal to $1$.

  • 4π-normalized

\[\mathscr{Y}_{\ell}^m (\theta, \varphi) = \sqrt{4\pi}Y_{\ell}^m(\theta, \varphi) = \sqrt{(2\ell+1)\frac{(l-m)!}{(l+m)!}}P_{\ell}^m(\cos \theta)\mathrm{e}^{\mathrm{i}m \varphi}, \]

with

\[\int_0^{2\pi}\int_0^{\pi}\mathscr{Y}_{k}^m(\theta, \varphi)\bar{\mathscr{Y}}_{\ell}^n(\theta, \varphi)\sin \theta \mathrm{d}\theta\mathrm{d}\varphi = 4\pi\delta_{k\ell}\delta_{mn}. \]

Complex Solid Harmonics

In crlm.jl, Polynomials4ML utilizes orthonormalized complex solid harmonics defined as

\[ \gamma_{\ell}^m(r, \theta, \varphi) = r^{\ell}Y_{\ell}^m(\theta, \varphi). \]

$\gamma_{\ell}^m$'s are orthogonal is the sense that

\[ \int_0^{2\pi}\int_0^{\pi}\gamma_{k}^m(\theta, \varphi)\bar{\gamma}_{\ell}^n(\theta, \varphi)\sin \theta \mathrm{d}\theta\mathrm{d}\varphi =\delta_{k\ell}\delta_{mn}r^{k+\ell}.\]

The evaluation of solid harmonics can be obtained from the spherical harmonics by a simple scaling with $r^{\ell}$. To evaluate the gradients of the solid harmonics, $\nabla \gamma_{\ell}^m$, the following expressions are used,

\[\begin{cases} (\frac{\partial r}{\partial x}, \frac{\partial r}{\partial y}, \frac{\partial r}{\partial z}) = (\sin \theta \cos \varphi,\sin\theta\sin \varphi, \cos \theta)\\ (\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z}) = (-\frac{\sin\varphi}{r\sin \theta}, \frac{\cos\varphi}{r\sin \theta}, 0)\\ (\frac{\partial \theta}{\partial x}, \frac{\partial \theta}{\partial y}, \frac{\partial \theta}{\partial z}) = (\frac{\cos \varphi \cos \theta}{r}, \frac{\sin \varphi \cos \theta}{r}, -\frac{\sin \theta}{r}) \end{cases}.\]

Therefore, the gradient of $\gamma_{\ell}^m$ can be expressed as,

\[\nabla \gamma_{\ell}^m = \frac{\ell r^{\ell} P_{\ell}^m \mathrm{e}^{\mathrm{i}m\varphi}}{r}\begin{bmatrix} \sin \theta \cos \varphi\\ \sin\theta\sin \varphi\\ \cos \theta \end{bmatrix}+ \frac{\mathrm{i}m P_{\ell}^m \mathrm{e}^{\mathrm{i}m\varphi}}{r\sin \theta}\begin{bmatrix} -\sin \varphi \\\cos \varphi \\0 \end{bmatrix} + \frac{\partial_{\theta}P_{\ell}^m \mathrm{e}^{\mathrm{i}m\varphi}}{r}\begin{bmatrix} \cos \varphi \cos \theta\\\sin \varphi\cos \theta \\-\sin\theta \end{bmatrix}.\]

Similarly, we incorporated the coefficient in of $P_{\ell}^m$ into the term $P_{\ell}^m$ itself. We can further compute $\nabla^2 \gamma_{\ell}^m$ as,

\[\nabla^2 r^{\ell}Y_{\ell m} = \left(\frac{1}{r^2}\frac{\partial}{\partial r} r^2\frac{\partial}{\partial r} - \frac{L^2}{r^2} \right)r^{\ell}Y_{\ell}^m = \frac{Y_{\ell m}}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial r^{\ell}}{\partial r} - \frac{r^{\ell}L^2 Y_{\ell}^{m}}{r^2} = 0,\]

that is, the solid harmonics are solutions to Laplace's equation.

Real Spherical Harmonics

In rylm.jl, Polynomials4ML utilizes orthonormalized real spherical harmonics that exclude the Condon-Shortley phase.

  • Include the Condon-Shortley phase factor:

\[Y_{\ell m}(\theta, \varphi) = \begin{cases} \frac{\mathrm{i}}{\sqrt{2}}(Y_{\ell}^m - (-1)^m Y_{\ell}^{-m}) & m < 0\\ Y_{\ell}^0 & m = 0 \\ \frac{1}{\sqrt{2}}(Y_{\ell}^{-m} + (-1)^m Y_{\ell}^{m}) & m > 0 \end{cases} = \begin{cases} (-1)^m \bar{P}_{\ell}^{|m|}(\cos \theta)\sin(|m|\varphi) & m < 0\\ \frac{1}{\sqrt{2}} \bar{P}_{\ell}^0(\cos \theta) & m = 0 \\ (-1)^m \bar{P}_{\ell}^{m}(\cos \theta)\cos(m\varphi) & m > 0 \end{cases}\]

  • Exclude the Condon-Shortley phase factor:

\[Y_{\ell m}(\theta, \varphi) = \begin{cases} -\bar{P}_{\ell}^{|m|}(\cos \theta)\sin(|m|\varphi) & m < 0\\ \frac{1}{\sqrt{2}} \bar{P}_{\ell}^0(\cos \theta) & m = 0 \\ \bar{P}_{\ell}^{m}(\cos \theta)\cos(m\varphi) & m > 0 \end{cases}\]

Orthonormalized real spherical harmonics that employ the Condon-Shortley phase up to degree $\ell = 3$ are

$m\backslash\ell$0123
3$\frac{1}{4}\sqrt{\frac{35}{2\pi}}\cdot \frac{x(x^2-3y^2)}{r^3}$
2$\frac{1}{4}\sqrt{\frac{15}{\pi}}\cdot \frac{x^2-y^2}{r^2}$$\frac{1}{4}\sqrt{\frac{105}{\pi}}\cdot \frac{(x^2-y^2)z}{r^3}$
1$\sqrt{\frac{3}{4\pi}}\cdot \frac{x}{r}$$\frac{1}{2}\sqrt{\frac{15}{\pi}}\cdot \frac{zx}{r^2}$$\frac{1}{4}\sqrt{\frac{21}{2\pi}}\cdot \frac{x(5z^2-r^2)}{r^3}$
0$\frac{1}{2}\sqrt{\frac{1}{\pi}}$$\sqrt{\frac{3}{4\pi}}\cdot \frac{z}{r}$$\frac{1}{4}\sqrt{\frac{5}{\pi}}\cdot \frac{3z^2-r^2}{r^2}$$\frac{1}{4}\sqrt{\frac{7}{\pi}}\cdot \frac{z(5z^2-3r^2)}{r^3}$
-1$\sqrt{\frac{3}{4\pi}}\cdot \frac{y}{r}$$\frac{1}{2}\sqrt{\frac{15}{\pi}}\cdot \frac{yz}{r^2}$$\frac{1}{4}\sqrt{\frac{21}{2\pi}}\cdot \frac{y(5z^2-r^2)}{r^3}$
-2$\frac{1}{2}\sqrt{\frac{15}{\pi}}\cdot \frac{xy}{r^2}$$\frac{1}{2}\sqrt{\frac{105}{\pi}}\cdot \frac{xyz}{r^2}$
-3$\frac{1}{4}\sqrt{\frac{35}{2\pi}}\cdot \frac{(3x^2-y^2)y}{r^3}$

Real Solid Harmonics

In rrlm.jl, Polynomials4ML utilizes Schmidt semi-normalized real solid harmonics that exclude the Condon-Shortley phase.

  • Include the Condon-Shortley phase factor:

\[S_{\ell m}(r, \theta, \varphi) = \begin{cases} \frac{\mathbb{i}}{\sqrt{2}}\left(C_{\ell, m}-(-1)^m C_{\ell,-m} \right) & m < 0\\ C_{10} & m = 0 \\ \frac{1}{\sqrt{2}}\left(C_{\ell, -m}+(-1)^m C_{\ell,m}\right) & m > 0 \end{cases} = \begin{cases} (-1)^m \sqrt{\frac{4\pi}{2l+1}}\cdot r^{\ell}\bar{P}_{\ell}^{|m|}(\cos \theta)\sin(|m|\varphi) & m < 0\\ \sqrt{\frac{2\pi}{2l+1}}\bar{P}_{\ell}^0(\cos \theta) & m = 0 \\ (-1)^m \sqrt{\frac{4\pi}{2l+1}}\cdot r^{\ell}\bar{P}_{\ell}^{m}(\cos \theta)\cos(m\varphi) & m > 0 \end{cases},\]

where

\[C_{\ell, m}(r, \theta, \varphi) = \sqrt{\frac{4\pi}{2\ell + 1}}\gamma_{\ell}^m(\theta, \varphi), \]

with

\[\int_0^{2\pi}\int_0^{\pi}C_{k,m}(r, \theta, \varphi)\bar{C}_{\ell, n}(r, \theta, \varphi)\sin \theta \mathrm{d}\theta\mathrm{d}\varphi = \frac{4\pi}{2\ell + 1}\delta_{k\ell}\delta_{mn} r^{k+\ell}. \]

  • Exclude the Condon-Shortley phase factor:

\[S_{\ell m}(r, \theta, \varphi) = \begin{cases} -\sqrt{\frac{4\pi}{2l+1}}\cdot r^{\ell}\bar{P}_{\ell}^{|m|}(\cos \theta)\sin(|m|\varphi) & m < 0\\ \sqrt{\frac{2\pi}{2l+1}}\bar{P}_{\ell}^0(\cos \theta) & m = 0 \\ \sqrt{\frac{4\pi}{2l+1}}\cdot r^{\ell}\bar{P}_{\ell}^{m}(\cos \theta)\cos(m\varphi) & m > 0 \end{cases}\]

Schmidt semi-normalized real spherical harmonics that employ the Condon-Shortley phase up to degree $\ell = 3$ are

$m\backslash\ell$0123
3$\frac{1}{2}\sqrt{\frac{5}{2}}(x^2-3y^2)x$
2$\frac{1}{2}\sqrt{3}(x^2-y^2)$$\frac{1}{2}\sqrt{15}(x^2-y^2)z$
1$x$$\sqrt{3}xz$$\frac{1}{2}\sqrt{\frac{3}{2}}(5z^2-r^2)x$
0$1$$z$$\frac{1}{2}(3z^2-r^2)$$\frac{1}{2}(5z^2-3r^2)z$
-1$y$$\sqrt{3}yz$$\frac{1}{2}\sqrt{\frac{3}{2}}(5z^2-r^2)y$
-2$\sqrt{3}xy$$\sqrt{15}xyz$
-3$\frac{1}{2}\sqrt{\frac{5}{2}}(3x^2-y^2)y$

References

  1. Dusson, G., Bachmayr, M., Csányi, G., Drautz, R., Etter, S., van der Oord, C., & Ortner, C. (2022). Atomic cluster expansion: Completeness, efficiency and stability. Journal of Computational Physics, 454, 110946.
  2. Helgaker, T., Jorgensen, P., & Olsen, J. (2013). Molecular electronic-structure theory. John Wiley & Sons.
  3. Limpanuparb, T., & Milthorpe, J. (2014). Associated Legendre polynomials and spherical harmonics computation for chemistry applications. arXiv preprint arXiv:1410.1748.
  4. Wieczorek, M. A., & Meschede, M. (2018). SHTools: Tools for working with spherical harmonics. Geochemistry, Geophysics, Geosystems, 19(8), 2574-2592.